Содержание
Что представляет собой осциллограф и его функции
Для тех кто не особо знаком с работой осциллографа и его визуальными видами поясню. Это прибор (в старом варианте типа мини-телевизора, в новом — дизайн планшета и т. п.), который измеряет и отслеживает частотные колебания в электрической сети. На практике он широко используется многими специализирующимися лабораториями и профессиональными радиотелемастерами. Поскольку точные настройки многих электроприборов производятся только с его помощью.
Его показания в электронной или бумажной форме позволяют видеть синусоидальные формы сигнала. Частота и интенсивность этого сигнала, в свою очередь, позволяет определить неисправность или неправильную сборку электросхемы. Сегодня мы рассмотрим двухканальный осциллограф, который можно собрать своими руками на основе действующих схем смартфона, планшета и соответственного программного обеспечения.
Подгонка резисторов
Стоит отметить, что подгонка резисторов посредством удаления части пленки на сегодняшний день иногда используется даже в современной промышленности, то есть таким способом часто делается осциллограф из компьютера (USB или какой-нибудь другой).
Однако при этом сразу стоит отметить, что если вы собираетесь подгонять высокоомные резисторы, то в таком случае резистивная пленка ни в коем случае не должна быть прорезана насквозь. Все дело в том, что в таких устройствах она наносится на цилиндрическую поверхность в форме спирали, поэтому производить подпил нужно предельно осторожно, чтобы исключить возможность разрыва цепи.
Если вы делаете осциллограф из компьютера своими руками, то для того, чтобы провести подгонку резисторов в домашних условиях, нужно просто использовать самую простую наждачную бумагу «нулевку».
- Первоначально у того резистора, у которого присутствует заведомо меньшее сопротивление, нужно удалить аккуратно защитный слой краски.
- После этого следует подпаять резистор к концам, которые и будут подклеиваться к мультиметру. Путем выполнения осторожных движений наждачной бумагой показатели сопротивления резистора доводятся до нормального значения.
- Теперь, когда резистор окончательно подогнан, место пропила нужно покрыть дополнительным слоем специализированного защитного лака или же клея.
На данный момент такой способ можно назвать наиболее простым и быстрым, но при этом он позволяет получить неплохие результаты, что и делает его оптимальным для проведения работ в домашних условиях.
Усиление входящего сигнала
Все, что было сделано до этого момента, позволило нам создать неплохой визуализатор входного сигнала. Достаточно гнездо для подключения iPod соединить с катушкой вертикального отклонения и звучащая музыка отобразится на экране. Но чтобы получить настоящий осциллограф, понадобится дополнительный усилитель (собрать его можно там, где размещался выброшенный UHF/VHF тюнер). Его идея была заимствована с нескольких тематических сайтов, с целью получения минимальной себестоимости и максимальной эффективности. За основу бралась разработка Павла Фальстада, а представленная печатная плата — доработанная схема двухтактного аудио усилителя.
Для его реализации нам понадобится: микросборка TL082, включающая 2 ОУ, пара транзисторов (например, 41НПН/42ПНП), регулятор мощности LM317, поворотный переключатель «Полюс», потенциометр 1 мОм, два тримера на 10 кОм, 4 диода на 1А, трансформатор на 30 В переменного напряжения, электролит 1000 мкФ 50 В, два электролита 470 мкФ 16 В и 5 резисторов (10 Ом, 220 Ом, 1 кОм, 100 кОм и 10 мОм).
Первым ОУ контролируется усиление входного сигнала по формуле R1/R2, где R1 – сопротивление, выбранное поворотным переключателем, R2 – горшок 1 мОм. Теоретически он способен усилить входной сигнал до 1 млн. раз (при имеющемся на вращающемся переключателе минимуме 1 Ом). Второй отслеживает, чтобы транзисторы получали необходимое напряжение для открытия переходов и компенсирует перекосы. Им нужно 0.7 В на раскрытие и 1.4 В на переключение.
Готовая схема требует обязательной калибровки. Регулятор мощности рассчитан на разницу в 30 В, поэтому ОУ стандартно выдаст +15/-15 В, но для хорошей фильтрации его выход должен быть на несколько вольт ниже, чем напряжение на емкости в 1000 мкФ. Для этого существует триммер 1. Выход цепи подключается к горизонтальной катушке отклонения. Музыка, пропускаемая через схему, начинает «обрезаться» сверху/снизу. Чтобы избежать этого, триммер 2 регулируют до тех пор, пока верхние части клипов не коснутся границ экрана. Это понизит напряжение и не даст транзисторам перегрузить ВЧ-тракт прибора (сжечь катушку отклонения).
Теперь можно подключить на выход телевизора встроенную акустическую систему. При чрезмерной громкости добавляют большое сопротивление нагрузки (например, 10 Ом 1 Вт), при недостатке звука сопротивление нагрузки ставят на отклоняющую катушку, после чего последнюю перекалибровывают. Чтобы защитить себя от излишних раздражающих звуковых сигналов в процессе просматривания необходимого сигнала входа, на динамик можно установить выключатель.
Щуп для компьютерного осциллографа
Даже имея массу различных промышленных кабелей, не лишним будет изготовить своими руками кабель-щуп для осциллографа, работающий на низкой частоте.
Преимуществом самодельного кабеля данного типа является его гибкость и небольшой размером, что очень удобно.
Минусом является то, что область его эксплуатации сводится к ремонту примитивной аудиотехники. Для использования самодельного осциллографа вполне достаточно будет «кабель-щупа».
Режимы работы
Реализовал 3 режима по принципу действия: непрерывный, пакетный и логический и 3 по количеству каналов: 1, 2 и 4-х канальный. МК имеет 9 аналоговых входов, но я не представляю когда мне может понадобиться больше 4-х каналов.
Непрерывный
Тут всё просто: в главном цикле МК считываем данные АЦП и передаём их на ПК, где можем строить непрерывный график. Недостаток — ограничение скорости со стороны канала МК -> ПК. Чтобы его обойти реализовал ещё 2 режима.
Пакетный
В отличие от проекта baghear у меня триггер программный. Преимущества такого решения:
- Меньше деталей, а значит меньше цена и проще монтаж;
- Возможность в будущем реализовать более сложные триггеры, а не просто «сигнал в A канале стал больше Х».
В одноканальном режиме оба АЦП по очереди преобразуют значение одного канала. В двухканальном — каждый АЦП преобразует свой канал запускаясь одновременно с другим. В 4-х канальном — у каждого АЦП есть 2 канала, которые он преобразует. Старт обоих АЦП одновременный. Очевидно, что скорость частота преобразования канала обратнопропорциональна количеству каналов.
Читайте также: 7 Пластическая деформация и механические свойства
Логический анализатор
Самый быстрый режим. Примерно 20 MSPS на каждом канале. Самый быстрый код для этого режима выглядит так: u32 i = 0; dataBuffer.u8 = GPIOA->IDR; dataBuffer.u8[++i] = GPIOA->IDR; dataBuffer.u8[++i] = GPIOA->IDR; dataBuffer.u8[++i] = GPIOA->IDR; dataBuffer.u8[++i] = GPIOA->IDR; dataBuffer.u8[++i] = GPIOA->IDR; и так далее на весь буфер. Значение переменной i в этом случае вычисляются на этапе компиляции и в итоге из dataBuffer.u8[++i] = GPIOA->IDR; получается всего 2 операции — загрузить данные в регистр из порта и сохранить данные в память по заранее посчитанному адресу. Никакими циклами такой производительности достичь не получилось.