Что такое ультразвуковая сварка и где она используется?

Необходимое оборудование

Типичная сварочная машина ультразвукового типа включает:

  • источник высокочастотных колебаний;

  • специальный акустический узел;

  • специальный волновод;

  • механизм прессового типа;

  • системы контроля качества.

Стоит учесть, что все аппараты должны быть сделаны на заводе. Кустарно изготовить их нельзя — это потребовало бы слишком сложных математических расчетов и составления продуманных моделей. Достаточно совсем небольшого отклонения, чтобы в контактном месте появился резонанс. Рассчитывать на высокое качество сварных швов в таком случае невозможно. Контактные обрабатывающие системы чаще всего работают с материалами толщиной до 0,5 см. Швейная ультразвуковая машина предназначена для изготовления одноразовых изделий, в том числе и медицинского профиля. Такое оборудование подходит не только для простых полимеров, но и для:

  • волокнистых материалов;

  • брезентов полимерного состава;

  • иглопробивных изделий;

  • тканых материалов;

  • термически скрепленных геотекстилей;

  • различных пленок.

chto-takoe-ultrazvukovaya-svarka-i-gde-ona-ispolzuetsya-20.jpg

Системы УЗС также различают по методу движения волноводов (в прессовом варианте подразумевается короткое движение элементов, в непрерывном — свариваемый участок подвергается долгому воздействию). По тому, как дозируется прилагаемая механическая энергия, различают:

  • оборудование с фиксированным временем действия импульсов;

  • системы с зазором;

  • системы с осадкой.

Важно: для проверки качества УЗ шва может применяться все тот же высокочастотный излучатель. Но стоит понимать, что в норме само оборудование работает скрупулезно, все рассчитывается до мелочей. Если режим не соблюден, проверять не имеет смысла — качественного стыка все равно не выйдет. Это одинаково верно для:

  • стационарных станков;

  • настольных аппаратов;

  • ручных сваривающих систем.

Хороший станок — к примеру, SportTex EU 1300. Внешне его сложно отличить от простой швейной машинки. Устройство рассчитано на ток с характеристиками 220 В и 50 Гц, потому его можно спокойно применять в любом доме. Общая мощность составляет 1500 Вт, а одновременно обрабатываемая поверхность достигает 5 см. За минуту можно отработать до 10 м шва, при этом создается напор до 7 бар.

Испускаемый ультразвук имеет частоту не более 20 кГц. Линейные параметры устройства — 120х120х55 см. Его масса равна 110 кг. Из-за больших размеров и тяжести агрегат востребован главным образом в промышленных условиях. Платить за EU 1300 придется минимум 200 тысяч рублей.

Более компактны настольные аппараты, которые соединяют тубы для косметики, зубных паст, красок, клеев и так далее. Подобные устройства выполняют работу за 0,3 — 1,5 секунды. Точный показатель определяется шириной шва, которая иногда достигает 7 см. Прочие технические свойства у типичных настольных сварочных машинок:

  • испускаемые частоты до 35 кГц;

  • мощность до 1500 Вт;

  • привод на пневматической тяге;

  • масса до 30 кг.

Наиболее компактные аппараты предназначены для клепки пластмасс и прикрепления элементов к несущим конструкциям. Хорошим образцом таких изделий является Handy Star. По мощности, частотам импульсов и темпу работы это изделие почти не уступает настольным вариантам. Однако в пользу устройства говорят его сравнительно малые габариты (0,72 по сумме трех измерений) и легкость — 4,5 кг. С помощью Handy Star можно починить изделия из брезента, подготовить ленту для конвейерного транспортера; но допускает только соединение сухих деталей длиной максимум 0,25 м.

chto-takoe-ultrazvukovaya-svarka-i-gde-ona-ispolzuetsya-4.jpg

Стоит учесть, что ультразвуком варят еще и металлы, и для такой работы применяют оборудование с высокой частотой колебаний. Потому рекомендовано использование магнитострикционного эффекта, то есть перемена размеров отдельных веществ при колебаниях в магнитном поле. Преобразователи в современном ультразвуковом оборудовании часто делают из химически чистого никеля либо сплавов железа с кобальтом. Чтобы нарастить амплитуду смещения и концентрировать энергию, волноводы (концентраторы) обычно делают похожими на усеченный конус.

Сферы использования

Основную роль ультразвуковое сваривание имеет при работе с малогабаритными деталями. Его широко применяют, когда нужно выполнить соединение проводов, прежде всего в радиоэлектронных и приборостроительных производствах. Работа с металлом происходит при заметно более слабом нагреве, чем при использовании классических нагревательных методов. Потому можно не опасаться за сохранность компонентов, восприимчивых к чрезмерной температуре. Кроме того, ультразвук позволит приварить друг к другу изделия из цветных металлов, которые в обычных условиях присоединяются крайне неохотно.

Именно таким путем, к примеру, соединяют изделия из меди и алюминия, алюминий с никелем и другие подобные варианты. Прочность формируемого шва будет примерно 70% от показателей исходного сплава. Ультразвуковая методика подходит еще и для работы с тугоплавкими металлами и сплавами. Немаловажно, что она позволит в произвольных сочетаниях соединять:

  • композитные материалы;

  • металлы;

  • керамические изделия;

  • пластики;

  • стекло.

При сварке пластмасс ультразвуком можно добиться повышенной производительности и сократить себестоимость работы. Даже на довольно толстых пластмассовых заготовках удается добиться повышенной герметичности швов. Сами швы будут выглядеть лаконично и практически незаметно. Но необходимо понимать, что из-за ограниченной мощности излучателя придется подводить энергию с двух сторон. Проконтролировать качество шва будет весьма сложно.

При ультразвуковой сварке полимеров можно соединять детали, одна из которых практически не ограничена по величине. В зависимости от распределения энергии такая обработка делится на контактный и передаточный типы. Контактная обработка проводится прежде всего для эластичных конструкций сравнительно малой толщины.

chto-takoe-ultrazvukovaya-svarka-i-gde-ona-ispolzuetsya-14.jpg

Чаще всего соединения формируются методом «нахлеста». Передаточная методика сварки полимерных материалов предпочтительна главным образом для жестких веществ — в том числе и полиметилакрилата; ультразвуковое сваривание полипропилена и полиэтилена тоже вполне возможно.

chto-takoe-ultrazvukovaya-svarka-i-gde-ona-ispolzuetsya-15.jpg

Преимущества и недостатки

Плюсы использования ультразвука вместо дуги или газовой горелки:

  • нет аэрозольных выделений из ванны расплава;
  • не нужно применять флюсы, создавать защитную атмосферу;
  • высокая точность и тонкость линии шва;
  • отсутствие расходных материалов;
  • не нужно заниматься подготовкой поверхности, ее очисткой;
  • не возникает внутренних напряжений, термодеформации;
  • варить можно в любом положении;
  • позволяет получать разнородные сочинения металлов и неметаллов;
  • применим для тонких изделий от 3 мкм;
  • можно получать линейные и точечные соединения встык, внахлест, тавровые.

К минусам относят невозможность соединения толстостенных элементов, сложность оборудования. Для работы на нем нужна практика.

Для чего нужна ультразвуковая сварка?

Несмотря на то, что до пандемии коронавируса об этом мало кто задумывался, но технология ультразвуковой сварки довольно давно применяется для изготовления гигиенических и медицинских изделий из полипропилена – материала на основе нетканых материалов. Так, немецкая компания Weber Ultrasonics защитные маски еще не производит, а вот их ультразвуковые сварочные системы имеют решающее значение для производителей масок. Преимущественно, что так было и до вспышки CoVID-19, однако с начала пандемии компания столкнулась с растущим спросом на компоненты для ультразвуковой сварки. Об этом сообщает Кристиан Унсер, главный коммерческий директор компании Weber Ultrasonics:

Во всем мире экономическая ситуация сегодня критическая, но у таких компаний, как наша, дела идут хорошо. Мы уже работаем с производителями масок и многие из них обращаются к нам, чтобы приобрести ультразвуковые компоненты, такие как генераторы, ускорители и преобразователи и др.

Так что же представляет собой этот ультразвуковой процесс? При всей кажущейся сложности, ультразвуковая сварка на самом деле простой процесс. Источником энергии являются ультразвуковые колебания, которые воздействуют на соединяемые детали. В нашем случае ткани – собранные вместе под небольшим давлением. По мимо тканей это могут быть любые другие материалы.

Если не вдаваться в подробности, то через две части материала, которые нужно сварить между собой, пропускается высокочастотные звуковые волны (ультразвук). Они нагревают материал и и за счет своего колебания создают трение между деталями. Таким образом обе части как бы проникают друг в друга и свариваются между собой. А чтобы было еще проще, представьте себе две зефирки, которые вы слегка нагрели на плите и соединили между собой. Тут принцип такой же, только нагревание и трение достигается за счет ультразвуковых волн.

Две детали кладут друг на друга, надавливают и плотно прижимают, затем пропускают через них ультразвук, немного ждут и все готово.

Сварка, ламинирование, резка и тиснение нетканых и рулонных материалов с помощью ультразвука дарит многочисленные преимущества по сравнению с другими способами склейки. Но какие и почему?

Чтобы всегда быть в курсе новостей из мира популярной науки и высоких технологий, подписывайтесь на наш канал в Google News

Суть получения швов ультразвуком

Классическая ультразвуковая сварка существенно отличается от привычной для многих сварки металла. Для сварки металла требуется крайне высокая температура плавления, но в случае с ультразвуком необходима лишь энергия, исходящая от ультразвуковой волны, и одновременное механическое воздействие на предполагаемое место будущего шва. Поэтому нет необходимости использовать дополнительные расходники, вроде электродов или проволоки.

Сварщик подключает к ультразвуковому сварочную оборудованию генератор, благодаря которому образуются ультразвуковые колебания. Эти колебания преобразовываются в механические, происходит это с помощью специального преобразователя. Затем подключается волновод, который колеблется перпендикулярно сварному шву. За счет этого преобразованные колебания напрямую попадают в предполагаемое место будущего сварного соединения, также образуется статическое и динамическое давление. Статическое и динамическое давление направлено перпендикулярно деталям, при этом каждое из типов давлений выполняет свою функцию. Динамическое давление позволяет достичь необходимой температуры плавления для того или иного вида пластмассы, а статическое способствует формированию прочного соединения.

Читайте также:  Как правильно пользоваться перфоратором

Благодаря всем этим особенностям с помощью ультразвуковой сварки можно соединить даже металл и пластмассу, хотя их температура плавления существенно отличается. Также пластмассу можно соединить с любым другим материалом, способным выдержать ультразвуковую сварку.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий