Обычная нормализация металла

Предназначение нормализации металла

Нормализация изделия используется для:

  • Подготовки к закалке структуры металла;

  • Устранения наклепа и внутренних напряжений;

  • Получения мелкозернистой структуры в поковках (отливках).

Подобная термическая обработка позволяет исправить структуру металла, перегретого при горячей обработке или в процессе отжига. Примером может служить заэвтектоидная сталь. В её структуре цементит (имеет вид сетки) размещается по границам зерен, а это ухудшает её механические свойства.

Сущность процессов термообработки

Задачами различных технологий термической обработки является:

  • Обеспечение наиболее благоприятной микроструктуры сталей и сплавов;
  • Получение нужного уровня твёрдости: либо в тонкой поверхностной (или подповерхностной) зоне, либо по всему поперечному сечению заготовки;
  • Коррекция химического состава в зёрнах макроструктур различных сплавов.

В первом случае необходимо обеспечить максимальную степень однородности свойств металлов, что важно, например, для последующей механической или – особенно – деформирующей их обработки. В результате условия формоизменения заготовки по всем трём координатным осям оказываются одинаковыми, а брак конечной детали исключается.

Termicheskaya-obrabotka-metalla-300x187.jpg
Термическая обработка металла

Кроме того, выравнивание микро и макроструктуры  для процессов обработки металлов давлением необходимо для того, чтобы повысить степень деформации полуфабрикатов, приближая в итоге форму заготовки к форме готового изделия. Причём за наименьшее количество переходов, и используя минимально необходимое для этого усилие оборудования.

Изменение твёрдости (как следствие термической обработки) имеет своей целью улучшение эксплуатационных показателей деталей. Поскольку условия эксплуатации могут быть самыми разными, то и комплекс физико-механических свойств подбирается строго индивидуально: универсальных процессов термообработки сплавов с различным составом не существует.

Изменение химического состава в зёрнах микроструктуры, вследствие образования новых соединений в большинстве случаев не только поднимает показатели твёрдости, но и повышает износостойкость деталей, которые должны эксплуатироваться при повышенном трении, температуре или увеличенных против обычного удельных нагрузках.

Закалка-отпуск

В первую группу технологий термообработки различных сплавов, включая сталь, входят отжиг и отпуск. Во вторую —  закалка, нормализация, улучшение, старение, обработка холодом. В третью – все виды термохимической обработки.

Отжиг

Суть процессов, протекающих в структуре большинства сплавов, подвергаемых отжигу – обеспечить наиболее равновесную структуру заготовки, в которой или отсутствуют внутренние напряжения, или их уровень достаточно низок, а потому не влияет на последующую обрабатываемость металлов/сплавов.

Pechi-dlya-otzhiga-proizvodstva-BOSIO-300x228.jpg
Печи для отжига производства BOSIO

Исходная структура практически всех сплавов и сталей представляет собой достаточно крупные зёрна, между которыми располагаются включения и примеси, преимущественно сера и фосфор. Это увеличивает хрупкость металла, что может быть важно при формообразовании из слитка (или катанки) изделий сложной конфигурации. Поэтому необходимо снизить размер зерна и придать ему оптимальную форму эллипсоида, при которой механические свойства будут примерно одинаковы по всем трём координатным осям.

Отжиг цветных металлов
Отжиг металла

Вторая важная задача отжига – снять внутренние напряжения, которые формируются в заготовке при её обработке давлением в холодном состоянии. Дело в том, что любая деформация сопровождается дроблением зёрен исходной структуры сталей и сплавов. В итоге зёрен становится больше, сопротивление деформации возрастает, что не только требует повышенного усилия деформирования, но и становится причиной разрушения полуфабриката, степень деформации которого превысила критический для данного металла показатель.

Способы высокотемпературного отжига

Нагрев происходит медленно, с последующей выдержкой изделия при заданной температуре, после чего следует медленное же охлаждение. Для легированных сталей и сплавов такое охлаждение ведут с особо низкой скоростью, в самой печи, где происходил отжиг.

Отпуск

Отпуск по технологии напоминает отжиг, но производится не с заготовкой, а с готовым изделием, а потому преследует иные задачи – снять внутренние напряжения после термической обработки, которая проводилась на повышенную твёрдость детали.

Отпуск металла

Самостоятельным процессом термической обработки отпуск не является. В отличие от отжига, отпуск иногда выполняется в несколько приёмов: в большинстве случаев это касается изделий, для производства которых использовались различные виды высоколегированной стали.

Закалка

Схема структурных превращений мартенсита в стали у-8 при нагреве

Режимы закалки отличаются наибольшим разнообразием. Основным фактором, определяющим эффективность закалки, является интенсивность образования в структуре мартенсита – высокотемпературной составляющей, которая придаёт металлу или сплаву повышенную твёрдость.

Условия образования мартенсита определяются следующими обстоятельствами:

  • Марками сталей или сплавов.
    Интервал температур нагрева под закалку углеродистых сталей
  • Исходной структурой.
  • Требуемой конечной твёрдостью.
  • Необходимостью наличия ряда соединений в микроструктуре, которые образуются лишь при повышенных температурах.

Соответственно для каждой марки стали или сплава разработаны индивидуальные режимы закалки, которые различаются:

  • Скоростью нагрева заготовки до необходимых температур (допускаемая погрешность для некоторых видов
    Режим закалки стали в зависимости от марки
  • Длительностью выдержки изделия в печи при заданной температуре;
  • Интенсивностью охлаждения изделия;
  • Количеством циклов закалки и последующего отпуска.

Особенно тщательно ведут закалку сталей и сплавов со сложным составом, включающим несколько легирующих элементов (в частности, кобальта, молибдена). Указанные металлы в процессе образуют по границам зёрен основной структуры интерметаллидные соединения, которые существенно увеличивают твёрдость и прочность сталей (в частности, инструментальных). Форма и концентрация интерметаллидов зависят только от точности соблюдения технологии закалки.

Присутствие в стали молибдена или вольфрама повышает теплостойкость, прокаливаемость и уменьшает склонность к обратимой хрупкости

Виды закалки определяются оборудованием, на котором она выполняется. Например, для таких изделий, как шестерни, валы, направляющие колонки, где требуется оптимальное сочетание высокой поверхностной твёрдости и относительно вязкой сердцевины, используется поверхностная закалка токами высокой частоты.

Закалка ТВЧ, закалка стали, температура закалки

Для этого изделие помещают в индукционную катушку, по которой пропускается высокочастотный (до 15000…25000 Гц) ток. Проникая на ограниченную глубину, этот ток способствует увеличению поверхностной прочности сталей или сплавов. В результате усталостная прочность деталей, которые работают при циклически изменяющихся напряжениях растяжения-сжатия, заметно возрастает.

Более интенсивное изменение твёрдости поверхности детали можно получить, используя для закалки высокоэнергетические источники тепла – искровой или дуговой разряд. Разряды должны возбуждаться в жидкой среде, куда помещают обрабатываемую заготовку или деталь.

Режимы термической обработки углеродистых инструментальных сталей во время закалки и после отпуска

После закалки в подавляющем большинстве случаев необходим отпуск, иначе чрезмерная конечная твёрдость детали становится причиной повышенной хрупкости при ударных нагрузках.

Криогенная обработка

Мартенситная составляющая в структуре большинства сталей и сплавов может появиться не только при  повышенной, но и при пониженной температуре.  Технология обработки холодом выгодно отличается от традиционных технологий термической обработки следующим:

  • В результате криогенной обработки количество остаточного аустенита в сталях снижается. Это стабилизирует размеры деталей (что особо важно для высокоточного инструмента), повышает
    Kriogennaya-obrabotka-300x111.jpg
    Криогенная обработка

    теплопроводность и магнитные свойства, увеличивает итоговую прочность изделия.

  • Отпадает потребность в последующем отпуске. Это сокращает длительность производственного цикла, что обычно сопровождает все остальные виды термической обработки.
  • Для быстрорежущих сталей (из которых изготавливается высокостойкая инструментальная оснастка для
    Opredelenie-kriogennoy-obrabotki-300x199.png
    Определение криогенной обработки

    металлорежущего и штамповочного оборудования) обработка холодом – единственный способ увеличить твёрдость, не потеряв при этом в показателях упругости.

  • Детали после криогенной обработки лучше поддаются полированию и шлифовке, что снижает коэффициент трения при функционировании таких деталей и повышает их износостойкость.

Особый вид термообработки представляют процессы химико-термической обработки. Их задачей является формирование в поверхностной микроструктуре карбидов и нитридов – соединений, существенно увеличивающих микротвёрдость деталей, и создающих в них остаточные напряжения сжатия. Такие изделия показывают особо высокую стойкость при знакопеременных нагрузках.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий